Vektorrechnung in der Ebene

1. Zeichne (von einem beliebigen Punkt aus) die Vektoren $\vec{a} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$.

Ermittle grafisch und rechnerisch:

$$\vec{a} + \vec{b}$$
, $\vec{a} - \vec{b}$, $\vec{b} - \vec{a}$, $2\vec{a}$, $-3\vec{b}$, $\frac{1}{2}\vec{a} + 2\vec{b}$

$$\vec{b} - \vec{a}$$
,

$$2\vec{a}$$
, $-3\vec{b}$

$$\frac{1}{2}\vec{a} + 2\vec{b}$$

2. Ermittle die Koordinatendarstellung des Pfeils AB und berechne seinen Betrag.

a)
$$A = (3/1), B = (6/5)$$

b)
$$A = (2/4), B = (7/2)$$

c)
$$A = (4/-2)$$
, $B = (1/3)$

d)
$$A = (2/7)$$
, $B = (-4/6)$

3. Der Anfangspunkt und die Koordinaten eines Pfeils sind gegeben. Ermittle die Koordinaten des Endpunkts.

a)
$$A = (1/2), \ \overrightarrow{AB} = {3 \choose 4}$$

b)
$$A = (3/5), \overrightarrow{AB} = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$$

c)
$$A = (4/-2)$$
, $\overrightarrow{AB} = \begin{pmatrix} -3 \\ 5 \end{pmatrix}$

d)
$$A = (-6/3)$$
, $\overrightarrow{AB} = \begin{pmatrix} 5 \\ -8 \end{pmatrix}$

4. Ermittlle den fehlenden Eckpunkt und den Umfang des Parallelogramms ABCD.

b)
$$A = (-10/2)$$
, $B = (2/-3)$, $D = (-7/6)$

c)
$$A = (1/3), C = (1/-3), D = (5/1)$$

5. Überprüfe, ob die Vektoren \overrightarrow{AB} und \overrightarrow{CD} parallel zueinander sind

b)
$$A = (6/6)$$
, $B = (7/1)$, $C = (3/4)$, $D = (5/-4)$

c)
$$A = (-1/2)$$
, $B = (4/5)$, $C = (6/3)$, $D = (1/0)$

d)
$$A = (-2/3)$$
, $B = (4/0)$, $C = (3/4)$, $D = (-1/6)$

6. Ergänze die fehlenden Koordinaten, so dass die Vektoren zu $\vec{v} = \begin{pmatrix} 5 \\ -2 \end{pmatrix}$ parallel sind.

$$\vec{a} = \begin{pmatrix} 15 \\ a_v \end{pmatrix}$$

$$\vec{a} = \begin{pmatrix} 15 \\ a_y \end{pmatrix}, \qquad \vec{b} = \begin{pmatrix} -20 \\ b_y \end{pmatrix}, \qquad \vec{c} = \begin{pmatrix} c_x \\ 10 \end{pmatrix}, \qquad \vec{d} = \begin{pmatrix} d_x \\ -1 \end{pmatrix}$$

$$\vec{c} = \begin{pmatrix} c_x \\ 10 \end{pmatrix},$$

$$\vec{\mathbf{d}} = \begin{pmatrix} \mathbf{d}_{\mathbf{x}} \\ -1 \end{pmatrix}$$

- 7. Überprüfe, ob die Vektoren \overrightarrow{AB} und \overrightarrow{AC} normal aufeinander stehen.
 - a) A(0/0), B(6/2), C(3/9)
 - b) A(5/1), B(2/4), C(0/-4)
 - c) A(2/7), B(8/3), C(-4/-2)
 - d) A(4/-4), B(8/1), C(0/-1)
- 8. Ergänze die fehlenden Koordinaten, so dass die Vektoren auf $\vec{v} = \begin{pmatrix} 5 \\ -2 \end{pmatrix}$ normal stehen.

$$\vec{a} = \begin{pmatrix} 4 \\ a_v \end{pmatrix}$$

$$\vec{b} = \begin{pmatrix} -1 \\ b_v \end{pmatrix},$$

$$\vec{a} = \begin{pmatrix} 4 \\ a_v \end{pmatrix}, \qquad \vec{b} = \begin{pmatrix} -1 \\ b_v \end{pmatrix}, \qquad \vec{c} = \begin{pmatrix} c_x \\ -10 \end{pmatrix}, \qquad \vec{d} = \begin{pmatrix} d_x \\ 3 \end{pmatrix}$$

$$\vec{d} = \begin{pmatrix} d_x \\ 3 \end{pmatrix}$$

- 9. Welchen Winkel schließen die Vektoren \vec{a} und \vec{b} miteinander ein?
 - a) $\vec{a} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$
 - b) $\vec{a} = \begin{pmatrix} -2 \\ 5 \end{pmatrix}, \vec{b} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$

 - c) $\vec{a} = \begin{pmatrix} 5 \\ -7 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$ d) $\vec{a} = \begin{pmatrix} 10 \\ -3 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} 5 \\ -4 \end{pmatrix}$
- 10. Berechne die Innenwinkel. den Umfang und den Flächennhalt des Dreiecks ABC. Untersuche, ob es sich um ein besonderes Dreieck handelt.
 - a) A = (2/3), B = (7/6), C = (0/9)
 - b) A = (-2/0), B = (9/3), C = (0/6)
 - c) A = (0/1), B = (6/5), C = (-2/6)
 - d) A = (-2/2), B = (3/0), C = (1/5)
- 11. Untersuche, ob es sich bei den folgenden Vierecken um besondere Vierecke handelt (wenn ja, um welche). Berechne den Umfang und, wenn möglich, den Flächeninhalt.
 - a) A = (-1/1), B = (6/2), C = (4/5), D = (-3/4)
 - b) A = (0/-1), B = (4/-3), C = (6/1), D = (2/3)
 - c) A = (-3/0), B = (3/-3), C = (2/2), D = (-2/3)
 - d) A = (4/0), B = (9/5), C = (2/4), D = (-3/-1)
 - e) A = (2/-3), B = (5/-1), C = (5/3), D = (2/5)
 - f) A = (0/0), B = (9/3), C = (8/6), D = (-1/3)

Ergebnisse:

1.
$$\vec{a} + \vec{b} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$$
, $\vec{a} - \vec{b} = \begin{pmatrix} 5 \\ -1 \end{pmatrix}$, $\vec{b} - \vec{a} = \begin{pmatrix} -5 \\ 1 \end{pmatrix}$, $2\vec{a} = \begin{pmatrix} 8 \\ 4 \end{pmatrix}$, $-3\vec{b} = \begin{pmatrix} 3 \\ -9 \end{pmatrix}$, $\frac{1}{2}\vec{a} + 2\vec{b} = \begin{pmatrix} 0 \\ 7 \end{pmatrix}$

2. a)
$$\overrightarrow{AB} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$
, $|\overrightarrow{AB}| = 5$ b) $\overrightarrow{AB} = \begin{pmatrix} 5 \\ -2 \end{pmatrix}$, $|\overrightarrow{AB}| = 5,39$

b)
$$\overrightarrow{AB} = \begin{pmatrix} 5 \\ -2 \end{pmatrix}$$
, $|\overrightarrow{AB}| = 5.39$

c)
$$\overrightarrow{AB} = \begin{pmatrix} -3 \\ 5 \end{pmatrix}$$
, $|\overrightarrow{AB}| = 5.83$ d) $\overrightarrow{AB} = \begin{pmatrix} -\overline{6} \\ -1 \end{pmatrix}$, $|\overrightarrow{AB}| = 6.08$

d)
$$\overrightarrow{AB} = \begin{pmatrix} -6 \\ -1 \end{pmatrix}$$
, $|\overrightarrow{AB}| = 6.08$

3. a)
$$B = (4/6)$$

b) B =
$$(7/3)$$

c)
$$B = (1/3)$$

c) B =
$$(1/3)$$
 d) B = $(-1/-5)$

c)
$$B = (-3/-1)$$
, $u = 20.3$

6.
$$\vec{a} = \begin{pmatrix} 15 \\ -6 \end{pmatrix}$$
, $\vec{b} = \begin{pmatrix} -20 \\ 8 \end{pmatrix}$, $\vec{c} = \begin{pmatrix} -25 \\ 10 \end{pmatrix}$, $\vec{d} = \begin{pmatrix} 2,5 \\ -1 \end{pmatrix}$

8.
$$\vec{a} = \begin{pmatrix} 4 \\ 10 \end{pmatrix}$$
, $\vec{b} = \begin{pmatrix} -1 \\ -2.5 \end{pmatrix}$, $\vec{c} = \begin{pmatrix} -4 \\ -10 \end{pmatrix}$, $\vec{d} = \begin{pmatrix} 1,2 \\ 3 \end{pmatrix}$

10.

a)
$$\alpha = 77.5^{\circ}$$
, $\beta = 54.2^{\circ}$, $\gamma = 48.3^{\circ}$, $u = 19.8$, $A = 18$; allgemeines Dreieck

b)
$$\alpha = 56.3^{\circ}$$
, $\beta = 33.7^{\circ}$, $\gamma = 90^{\circ}$, $u = 27.21$, $A = 30$; rechtwinkeliges Dreieck

c)
$$\alpha = 78.1^{\circ}$$
, $\beta = 40.8^{\circ}$, $\gamma = 61.1^{\circ}$, $u = 20.66$, $A = 19$; allgemeines Dreieck

d)
$$\alpha = 66.8^{\circ}$$
, $\beta = 46.6^{\circ}$, $\gamma = 66.8^{\circ}$, $u = 15.01$, $A = 10.5$; gleichschenkeliges Dreieck

11.

a) Parallelogramm
$$u = 21, 35$$
 $(A = 23)$

b) Quadrat
$$u = 17,89 A = 20$$

d) Rhombus
$$u = 28,28 A = 30$$

f) Rechteck
$$u = 25,30$$
 A = 30